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Abstract. A new parametrization of the classical shell model for the cubic phase of the perovskite
KNbO3 has been derived and used to calculate the structural, elastic and dielectric properties of
this material. Using this parametrization, the defect formation and migration energies, as well as
atomic displacements, have been calculated. In parallel, the quantum mechanical method of the
intermediate neglect of the differential overlap (INDO) has been applied to the same problem. The
migration energies for the O vacancy obtained by these quite different methods are reasonably close
(0.68 eV and 0.79 eV, respectively) and also agree with the only experimental estimate available
of approximately 1 eV. Atomic relaxations calculated by these two methods agree quite well.

ABO3 ferroelectric perovskites attract considerable attention because of their numerous
technological applications [1] (particularly in optical devices) and the difficulties in modelling
satisfactorily their unusual optical and dielectric properties. It is also well known that
structural defects considerably affect the properties of these materials and related devices.
In this paper we calculate the defect properties of KNbO3 which is an important material in
nonlinear optics, being used for frequency-doubling in laser applications. To this end, we
combine two semi-empirical approaches—the classical SM [2] and quantum-chemical INDO
[3] formalisms. The INDO approximation is a simplified version of the Hartree–Fock method
which permits large-scale modelling of the atomic and electronic structure of materials; it has
been successfully applied to defect calculations for many oxides, including perovskites [4].
With decreasing temperature, KNbO3 undergoes a series of phase transitions from paraelectric
cubic to ferroelectric tetragonal, orthorhombic, and rhombohedral phases. The displacement
of Nb atoms along [100], [110] and [111] corresponds to distortions of these symmetries
and thus models the transitions to the three relevant ferroelectric phases. Recently [5] the
2 × 2 × 2 supercell model has been used for INDO calculations of the crystal energy of
KNbO3 as a function of Nb displacements along the three principal directions. Consistent
with the experimental data [6], the [111] displacements provided the lowest energy minimum,
and [110] the next lowest. All this is in good agreement with the first principles FP-LMTO
result. The INDO parametrization developed in [5] was further checked by calculations of
the atomic positions in the orthorhombic and rhombohedral phases, with results in good
agreement with neutron diffraction data [6]. Calculated phonon frequencies in the cubic and
rhombohedral phases also agree well with the experimental results. The INDO calculations
indicate considerable covalency of the chemical bonding in pure KNbO3: the effective (static)
atomic charges being +0.553 for K, +2.019 for Nb, and−0.854 for O. Due to this covalency the
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analysis of the electron density distribution for the F centre (O vacancy with two electrons) [7]
reveals only a small portion of the electron density to be localized inside the O vacancy (where
additional sp-atomic orbitals were centred) whereas the rest of the electron density is spread
out in the vicinity of the O vacancy—in contrast to conventional F-type centres in many ionic
solids [4]. This result has been confirmed in first principles FP-LMTO calculations [8]. Lattice
relaxation energies for atomic defects in oxides are of the order of several eV, that is about two
orders of magnitude larger than the energy changes for the phase transitions. Consequently, in
this discussion of defect properties we consider here only thecubic(high-temperature) phase
of KNbO3. Note that the INDO method has also been used successfully in calculations of
F-type centremigrationin MgO [9] and KCl [10]. In this paper we use the 2×2×2 extended
unit cell of 40 atoms, as employed earlier for the calculations on F-centres in KNbO3 [7] and
on Nb-impurities in KTaO3 [11].

Our starting point in SM calculations was the interatomic potentials developed by
Donnerberg and Exner [12] which they used to calculate defect formation energies. These
Buckingham-type potentials

φij (R) = Dij exp(−R/ρij )− Cij/R6 (1)

whereR is the distance between ions of speciesi andj , φij is the interaction energy andi,
j = 1 for K, 2 for Nb, and 3 for O, give reasonable defect formation energies but have the
disadvantage of predicting a negative eigenvalue for the lowest transverse optic mode, which
is the soft mode in KNbO3. We therefore modified their potentials to fitωTO1 at the0 point in
the BZ at 710 K (in the cubic phase). Moreover, we found that, as for an earlier investigation
of SrTiO3 [13, 14], slight adjustments in the Nb–O repulsive parameterD23 were all that was
required to fitωTO1 over the wholeT -range 710–1180 K. However, we found it impossible to
fit the strong temperature dependence of the static permittivityεs as well as that ofωTO1 using
a conventional SM with temperature-dependent parameters.

Table 1 shows that the temperature dependence of the soft mode could be fitted
successfully using a modified potential which has a K–O repulsive parameterD13 = 600.3 eV,
and a temperature-dependentD23. Calculated values of the static permittivityεs were
about half the values calculated by Fontanaet al [15], from their IR reflectance data,
using the Lyddane–Sachs–Teller (LST) relation, but the calculated temperature-dependence
εs(T )/εs(Tr), where the reference temperatureTr is 1180 K, agreed quite closely with their
values [15] for this ratio (table 1). The frequencies of the other optic modes vary hardly at all
with temperature, so calculated and experimental values are compared in table 2 at just two
temperatures, 710 K and 1180 K. Calculated frequencies of the Raman mode are 320 cm−1 at

Table 1. Temperature dependence of the lattice constant a of cubic KNbO3 [15], of the Nb–O
repulsive constantD23, of calculated and experimental values [15] of the frequency of the soft
mode, and of the ratio of the static permittivity atT , to that atTr = 1180 K. Experimental values
of this ratio are from Fontanaet al [15].

ωTO1 (cm−1) εs(T )/εs(Tr )

T (K) a (Å) D23 (eV) Calc. Expt. Calc. Expt.

710 4.0220 1332.10 96.1 96 1.92 2.00
730 4.0225 1333.00 100.2 100 1.84 1.89
803 4.0241 1334.88 106.0 106 1.65 1.67
910 4.0265 1338.00 115.7 116 1.38 1.40

1030 4.0289 1341.60 127.1 127 1.15 1.18
1180 4.0320 1345.44 136.2 136 1.00 1.00
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Table 2. Comparison of frequencies of transverse and longitudinal optic modes of KNbO3
calculated from the SM I (see table 3) with experiment [15].

TO1 LO1 TO2 LO2 TO3 LO3

T (K) Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

710 96 96 488 419 194 198 194 190 492 521 777 826
1180 136 136 489 418 193 204 193 194 492 511 778 815

Table 3. (a) Shell-model potentials used for KNbO3 at 710 K. Buckingham repulsive (Dij ),
hardness (ρij ) and van der Waals (Cij ) parameters are defined in (1).Y is the shell charge (or core
charge on K+ when it has no shell) and K is the core-shell spring constant. Potential (I) for
unpolarizable K+; (II) for polarizable K+, i, j = 1 for K, 2 for Nb, and 3 for O. (b) Crystal
properties calculated from potentials I and II, using the experimental lattice constant at 710 K
(4.022 Å).

(a)

ij A (eV) ρ (Å) C (eV Å−2) i Y (|e|) K (eV Å−2)

(I) 13 600.3 0.36198 0.0 1 1.0 —
23 1332.1 0.36404 0.0 2−2.811 103.07
33 22 746.3 0.14900 27.88 3−4.496 2100.0

(II) The only parameters different to those in I are:
A13 = 640.0 eV;Y1 = −2.76|e|; K1 = 80.0 eV Å−2

(b)

I II Expt. Ref. [12]c

Cohesive energy (eV) −175.52 −175.34
Elastic constants (GPa)
c11 371 373 255a 398
c12 116 118 80a 142
c44 127 129 90a 142

Permittivities
staticεs 115.5 249 246b 516
high-frequencyε∞ 1.80 2.22 1.81b 1.81

Frequency of lowest transverse optic mode
ωTO1 (cm−1) 96 69 96b d

a Nuneset al [16].
b From Fontanaet al [15]; the value ofεs is the lattice contribution toεs calculated from the
LST relation. Actual values measured by Yanovskii [17] are much higher due to some further
polarization mechanism of unexplained origin [15].
c Recalculated fora + 4.026 Å, as used in [12].
d Negative eigenvalue.

710 K and 318 cm−1 at 1180 K, about 12% higher that the experimental value [15] of 280 cm−1

in the tetragonal KNbO3 phase at 585 K.
The SM potentials used are given in table 3 along with calculated and experimental values

of elastic constants and permittivities. Defect vacancy formation energies are compared in
table 4 with the earlier calculations of Donnerberg and Exner [12]. Our modified potentials
give formation energies about 3% higher for O and Nb, about 30% higher for K, perhaps
indicating some special difficulties in modelling the K+ ion. Tables 5 and 6 give the main
results for the vacancy calculations using both the semi-empirical methods, SM and INDO.
The atomic neighbourhood of the K and O vacancies and saddle-points are sketched in figure 1.
One can see that atomic displacements agree quite closely. The SM with a polarizable K+ ion
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Table 4. Calculated vacancy formation energies for KNbO3 (in eV).

This work, potential I Ref. [12]

a (Å) 4.022 4.026
VO 20.44 19.68
VK 5.76 3.99
VNb 122.83 119.57

Table 5. Atomic displacementsδ around O vacancy (A) and saddle point for the migrating Oi
atom (B) (in fractions of the lattice constant multiplied by 100)—see sketches in figures 1 and 2,
respectively. SM stands for the shell model, numbers in brackets are results for the rigid K+ ion
potential I (table 3),qeff is the effective ionic charge (in|e|). Outward displacements are positive,
inward displacements negative;N is the number of ions equivalent by symmetry.

INDO
SM

Ion N δ δ qeff (e)

A Nb 2 8.70 (8.16) 8.21 1.72
O 8 −2.35 (−2.80) −2.44 −0.82
K 4 1.31 (1.11) 1.73 0.50

B Oa
i 1 1.54 (1.25) 1.14 −0.72

Nb1 1 8.50 (8.10) 7.89 +1.68
Nb2 2 7.40 (7.14) 7.80 +1.83
Nb3 1 1.06 (1.70) fixed +1.85
O1 2 1.61 (1.58) 1.30 −0.81
K 8 2.20 (1.1) 1.52 0.50

Migration energy (eV) 0.67 (0.68) 0.79

a With respect to the mid-point of the line joining the two vacancies.

results in only slightly larger K+ displacements. The INDO effective atomic charges presented
in table 5 show that: (i) charges for Nb and O are quite different from those expected in a
completely ionic model (Nb+5, O−2, K+) but close to those found earlier for perfect KNbO3 [5],
(ii) the effective charges for theinterstitial Oi and Ki atoms are close to those for regular lattice
sites, which justifies the use of the same SM potentials in migration studies as developed for
the perfect crystal. The remarkable point is that a SM potential can incorporate so effectively
the covalency of Nb–O bonds in KNbO3. The calculated migration energies for O atoms are
very similar for the SM with and without a K+ shell, and are only smaller by 15% than the
INDO value where the covalency effects are properly incorporated.

The largest displacements occur for Nb atoms which give the dominant (90%) contribution
to the lattice relaxation energy. We are aware of only one experimental estimate of about 1 eV
[18] for the O vacancy migration energy which agrees qualitatively with our findings. This
demonstrates that O vacancies could be quite mobile in KNbO3 at elevated temperatures.
The INDO calculations give the activation energy for the K vacancy migration to be 0.60 eV,
which is even smaller than that for the O vacancy. Unfortunately, the SM calculations were
unable to locate saddle-point configurations with one imaginary eigenvalue for the migrating
K+ interstitial ion. Lastly, results of the SM calculations for the atomic displacements around
Nb vacancy are also presented in table 6. We faced here the same problem in locating the
saddle point, as for the K+ ion.

In conclusion, we believe that the results presented are likely to be valid also for
ferroelectric KNbO3 phases as well since the atomic displacements and energy relaxations
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Table 6. The same as table 5 for Nb vacancy (A), K vacancy (B), and the saddle point of the
hopping K+ ion (C) (see figure 1(a)). We were unable to find the saddle-point energy for Nb5+ and
K+ ions with either of the two SM potentials, in table 3.

INDO
SM

Ion N δ δ qeff (e)

A O 6 11.7
K 8 −8.2
Nb 6 1.3

B Nb 8 −1.58 (−1.50) −2.70 2.01
O 12 0.73 (0.80) 0.51−0.83
K 6 −0.22 (−0.20) −0.88 0.53

C O 4 3.8 −0.83
Nb 4 −2.5 2.01
K 8 −0.94 0.53

Migration energy for K+ (eV) 0.60

(a) (b)

Figure 1. Unit cell of KNbO3 (a) indicating saddle points (sp) for the O and K vacancy (VO , VK )
migration paths. Displacements of atoms around interstitial Oi ion shown in sketch (b) are given
in table 5.

obtained here for defects are two orders of magnitude larger than those responsible for the
ferroelectric transitions [5]. It would be of great interest to check our findings with first-
principles calculations, which are now in progress.
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